Bulk Viscous Contributions to Distribution Functions

Akihiko Monnai

Department of Physics, The University of Tokyo

Collaborator: Tetsufumi Hirano

Joint CATHIE-TECHQM Workshop

December 14th 2009, Brookhaven National Laboratory, USA

AM and T. Hirano, Phys. Rev. C **80**, 054906 (2009) AM and T. Hirano, in preparation

Outline

1. Introduction

Relativistic hydrodynamics and heavy ion collisions

2. Distortion of Distribution

How to express δf by dissipative currents

3. Effects on Observables

Numerical results of δf on observables

4. Summary and Outlook

How to obtain dissipative currents

1. Introduction

Next: 2. Distortion of Distribution

Introduction

■ RHIC experiment (2000-)

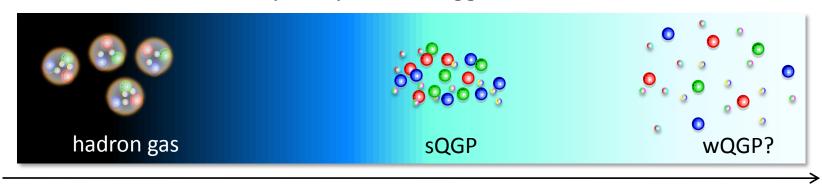
The quark-gluon plasma (QGP) created at

heavy ion collisions $\sqrt{s_{NN}}$ = 200GeV

It obeys relativistic ideal hydrodynamic models well.

Strongly-coupled QGP (sQGP)

The success of ideal hydrodynamics suggests sQGP at RHIC



 $T_C \approx 0.17$

RHIC

LHC

T (GeV)

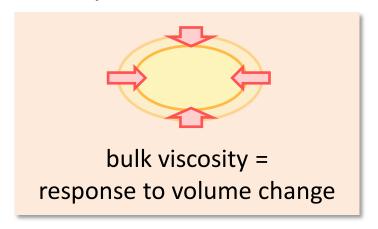
Introduction

LHC experiment (2009-)

Coupling constant "runs" to become smaller as energy gets higher

Viscous hydrodynamic models will become more important

Viscosity in QGP



Bulk viscosity is usually neglected, BUT might not be so small near T_c

Mizutani et al. ('88) Paech & Pratt ('06)

Kharzeev & Tuchin ('08)

put emphasis on bulk viscous effects in this talk

Introduction

How does viscosity affects observables?

One needs a convertor of flow field into particles at freezeout

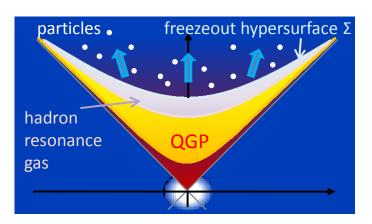
hydro result observables

Cooper-Frye formula

$$\frac{d^2 N_i}{d^2 p_T dy} = \frac{g_i}{(2\pi)^3} \int_{\Sigma} p_i^{\mu} d\sigma_{\mu} (f_0^i + \delta f^i)$$

variation of the flow/hypersurface

modification of the distribution



We need to estimate both δf^i and δu^{μ} in a multi-component system

2. Distortion of Distribution

Previous: 1. Introduction

Next: 3. Effects on Observables

Set-Ups

Thermodynamic variables

$$T^{\mu\nu} = eu^{\mu}u^{\nu} - (P_0 + \Pi)\Delta^{\mu\nu} + 2W^{(\mu}u^{\nu)} + \pi^{\mu\nu}$$
$$N_B^{\mu} = n_B u^{\mu} + V^{\mu}$$

e : energy density

 n_B : charge density

 Π : bulk pressure $\pi^{\mu
u}$: shear stress tensor

 P_0 : hydrostatic pressure W^μ : energy current V^μ : charge current

Dissipative currents (= 0 in ideal hydro)

Multi-component system

(multi component theory) $\neq \sum$ (single component theory)

because of (i) difference of particle masses, (ii) pair creation/annihilation

The non-trivialities has not been considered seriously

I put focus on developing a multi-component theory

Macroscopic to Microscopic

lacktriangle Express δf^i in terms of dissipative currents

Israel & Stewart ('76)

Macroscopic quantities

 $\Pi, W^{\mu}, V^{\mu}, \pi^{\mu\nu}$

Dissipative currents (given from hydro)

Microscopic quantities

 δf^i

Distortion of distribution (unknown)

14 "bridges" from Relativistic Kinetic Theory

$$\Pi = -\frac{1}{3} \Delta_{\mu\nu} \sum_{i} \int \frac{g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\mu} p_{i}^{\nu} \delta f^{i} \qquad \pi^{\mu\nu} = \sum_{i} \int \frac{g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\nu} p_{i}^{\nu} \delta f^{i}$$

$$W^{\mu} = \Delta^{\mu}_{\ \nu} u_{\rho} \sum_{i} \int \frac{g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\nu} p_{i}^{\rho} \delta f^{i} \qquad 0 = u_{\mu} \sum_{i} \int \frac{b_{i} g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\mu} \delta f^{i}$$

$$V^{\mu} = \Delta^{\mu}_{\ \nu} \sum_{i} \int \frac{b_{i} g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\nu} \delta f^{i} \qquad 0 = u_{\mu} u_{\nu} \sum_{i} \int \frac{g_{i} d^{3} p}{(2\pi)^{3} E_{i}} p_{i}^{\mu} p_{i}^{\nu} \delta f^{i}$$

δf^i in Multi-Component System

Grad's 14-moment method \square 14 unknowns $\varepsilon^{\mu}_{,} \varepsilon^{\mu\nu}$

$$\delta f^i = -f_0^i (1 \pm f_0^i) [p_i^\mu \varepsilon_\mu + p_i^\mu p_i^\nu \varepsilon_{\mu\nu}]$$

No scalar, but non-zero trace tensor

$$\partial_{\mu}s^{\mu}=\varepsilon_{\mu\nu}\partial_{\alpha}I^{\mu\nu\alpha}\geq0$$
: 2nd law of thermodynamics

$$\varepsilon^{\mu}_{\mu} \neq 0$$

The distortion is uniquely obtained:

New tensor structure for multi-component system

$$\varepsilon_{\mu} = D_0 \Pi u_{\mu} + D_1 W_{\mu} + \tilde{D}_1 V_{\mu}$$

$$\varepsilon_{\mu\nu} = (B_0 \Delta_{\mu\nu} + \tilde{B}_0 u_{\mu} u_{\nu}) \Pi + 2B_1 u_{(\mu} W_{\nu)} + 2\tilde{B}_1 u_{(\mu} V_{\nu)} + B_2 \pi_{\mu\nu}$$

where D_i and B_i are calculated in kinetic theory.

3. Effects on Observables

Previous: 2. Distortion of Distribution

Next: 4. Summary and Outlook

Model Inputs

Estimation of particle spectra (with bulk viscosity in δf):

$$\frac{d^2 N_i}{d^2 p_T dy} = \frac{g_i}{(2\pi)^3} \int_{\Sigma} p^{\mu} d\sigma_{\mu} [f_0^i - f_0^i (1 \pm f_0^i) (D_0 \Pi u_{\mu} p^{\mu} + (B_0 \Delta_{\mu\nu} + \tilde{B_0} u_{\mu} u_{\nu}) \Pi p^{\mu} p^{\nu})]$$

Flow u^{μ} , freezeout hypersurface $d\sigma_{\mu}$: (3+1)-D ideal hydrodynamic model Hirano et al.('06)

Equation of State: 16-component hadron resonance gas (hadrons up to $\Delta(1232)$, under $\mu \to 0$)

Freezeout temperature: $T_f = 0.16 (GeV)$

Bulk pressure: $\Pi = -\zeta \nabla_{\mu} u^{\mu}$ Navier-Stokes limit

Transport coefficients:

$$\zeta = \alpha \left(\frac{1}{3} - \frac{c_s^2}{2}\right)^2 \eta, \ \eta = \frac{1}{4\pi} s$$

where $c_s \equiv \sqrt{rac{\partial p}{\partial e}}$: sound velocity

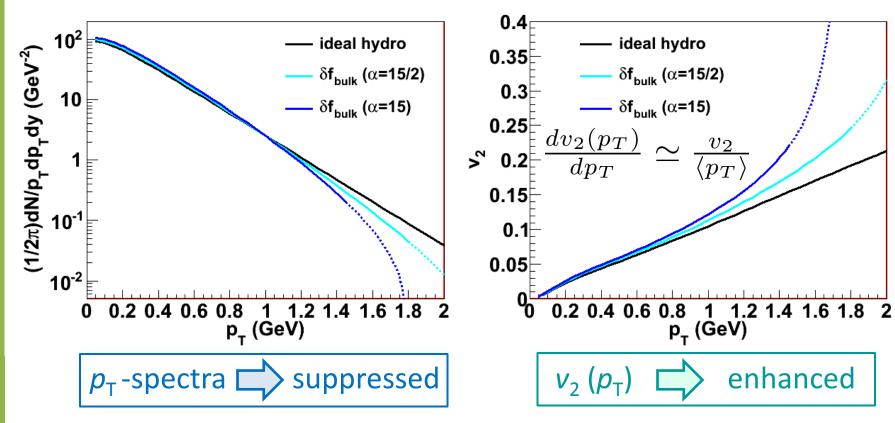
s: entropy density

Weinberg ('71) Kovtun et al. ('05)

$$\ \ \, \longrightarrow \eta = 1.31 \times 10^{-3} ({\rm GeV}^{^3})$$
 and $\zeta = 4.37 \times 10^{-4} ({\rm GeV}^{^3})$ when $\alpha = 15$

Bulk Viscosity and Particle Spectra

■ Au+Au, $\sqrt{s_{NN}}=200({
m GeV})$, b = 7.2(fm), $p_{
m T}$ -spectra and $v_{
m 2}(p_{
m T})$ of π^-



Even "small" bulk viscosity may have significant effects on particle spectra

4. Summary and Outlook

Previous: 3. Effects on Observables

Next: Appendix

Summary and Outlook

- Determination of δf^i in a multi-component system
 - Viscous correction $\varepsilon_{\mu\nu}$ has non-zero trace.
- Visible effects of δf_{bulk} on particle spectra
 - p_T -spectra is *suppressed*; $v_2(p_T)$ is *enhanced*

- Bulk viscosity can be important in extracting information (e.g. transport coefficients) from experimental data.
- Full Viscous hydrodynamic models need to be developed to see more realistic behavior of the particle spectra.

Estimation of Dissipative Currents

■ 2nd order Israel-Stewart theory

AM and T. Hirano, in preparation

Naïve generalization to a multi-component system does NOT work

Constitutive equations in a multi-component system:

Bulk pressure

$$\Pi = -\zeta \nabla_{\mu} u^{\mu}
- \tau_{\Pi} D\Pi + \chi_{\Pi W}^{a} W_{\mu} Du^{\mu} + \chi_{\Pi V}^{a} V_{\mu} Du^{\mu}
+ \chi_{\Pi W}^{b} \nabla^{\mu} W_{\mu} + \chi_{\Pi V}^{b} \nabla^{\mu} V_{\mu}
+ \chi_{\Pi \Pi}^{a} \Pi \nabla_{\mu} u^{\mu} + \chi_{\Pi \Pi}^{b} \Pi D \frac{\mu_{B}}{T} + \chi_{\Pi \Pi}^{c} \Pi D \frac{1}{T}
+ \chi_{\Pi W}^{c} W_{\mu} \nabla^{\mu} \frac{\mu_{B}}{T} + \chi_{\Pi V}^{c} V_{\mu} \nabla^{\mu} \frac{\mu_{B}}{T}
+ \chi_{\Pi W}^{d} W_{\mu} \nabla^{\mu} \frac{1}{T} + \chi_{\Pi V}^{d} V_{\mu} \nabla^{\mu} \frac{1}{T} + \chi_{\Pi \pi} \pi_{\mu\nu} \nabla^{\langle \mu} u^{\nu \rangle}$$

Navier-Stokes term

Israel-Stewart 2nd order terms

Post Israel-Stewart 2nd order terms

Shear tensor $\pi^{\mu\nu}$ in conformal limit reduces to AdS/CFT result (*Baier et al. '08*)

Thank You

■ The numerical code will become available at

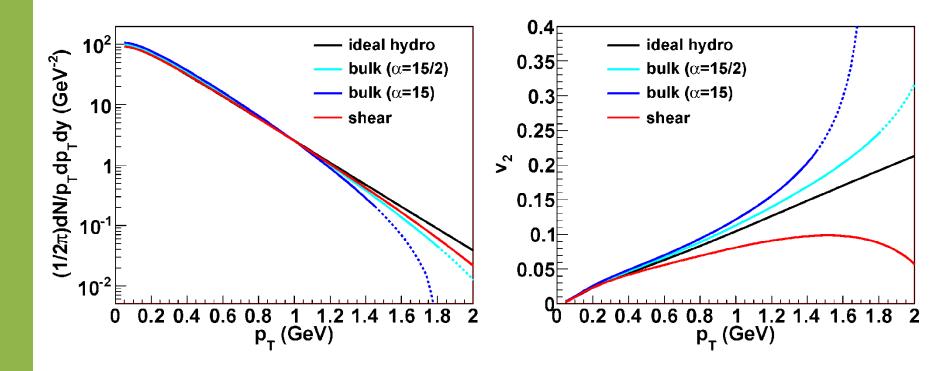
http://tkynt2.phys.s.u-tokyo.ac.jp/~monnai/distributions.html

Appendix

Previous: 4. Summary and Outlook

Shear Viscosity and Particle Spectra

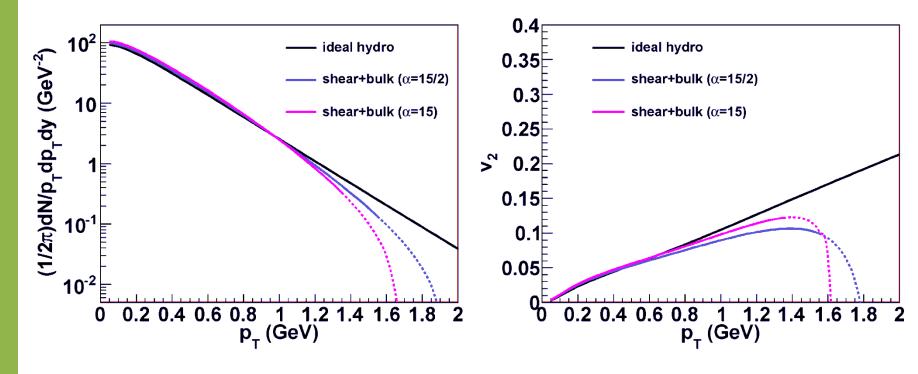
 p_T -spectra and $v_2(p_T)$ of π^- with shear viscous correction



Non-triviality of shear viscosity; both p_{T} -spectra and $v_{2}(p_{T})$ suppressed

Shear & Bulk Viscosity on Spectra

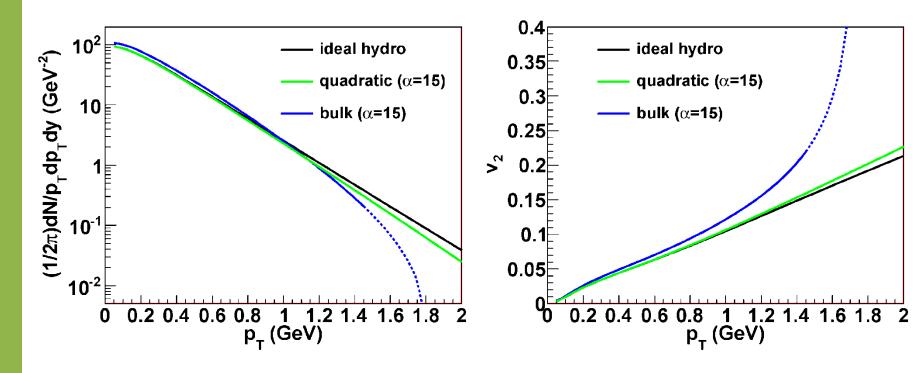
■ p_T -spectra and $v_2(p_T)$ of π^- with corrections from shear and bulk viscosity



Overall viscous correction suppresses $v_2(p_T)$; consistent with experiments

Quadratic Ansatz

lacksquare p_{T} -spectra and $v_{\mathrm{2}}(p_{\mathrm{T}})$ of π^- when $arepsilon_{\mu\nu}=C_1\pi_{\mu\nu}+C_2\Delta_{\mu\nu}\Pi$

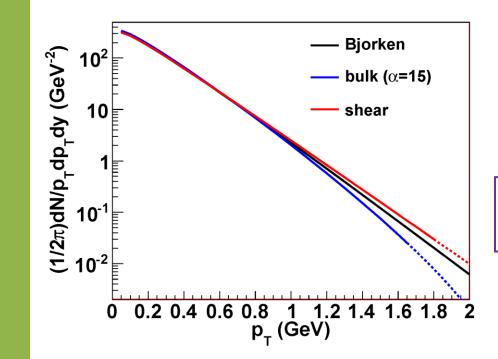


Effects of the bulk viscosity is underestimated in the quadratic ansatz.

Bjorken Model

■ $p_{\rm T}$ -spectra and $v_{\rm 2}(p_{\rm T})$ of π^- in Bjorken model with cylindrical geometry: $R_0=10.0{\rm fm}, \tau=7.5{\rm fm}$ $u^\tau=1,\ u^r=u^\phi=u^\eta=0$

$$d\sigma_{\tau} = \tau d\eta r dr d\phi, \ d\sigma_{r} = d\sigma_{\phi} = d\sigma_{\eta} = 0$$



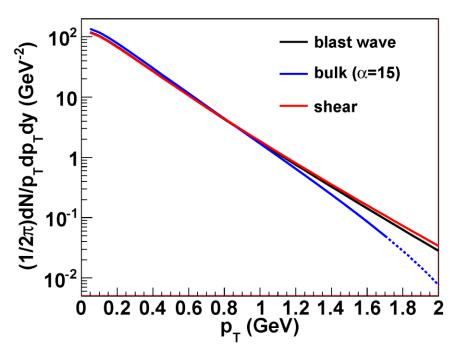
Bulk viscosity suppresses p_T -spectra Shear viscosity enhances p_T -spectra

Blast wave model

■ p_{T} -spectra and $v_2(p_{\mathsf{T}})$ of $\pi^$ $u^{r} = u_{0} \frac{r}{R_{0}} [1 + u_{2} \cos(2\phi)] \Theta(R_{0} - r)$ $u_{0} = 0.55, u_{2} = 0.2$

$$u^{\tau} = \sqrt{1 + (u^r)^2}$$

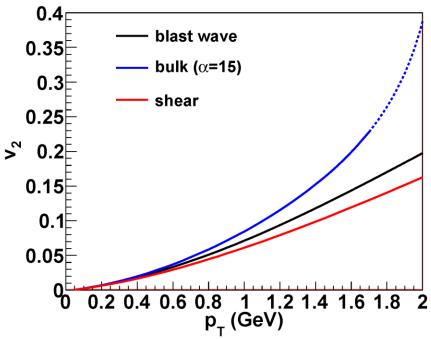
$$u^{\phi} = u^{\eta_s} = 0$$



$$R_0 = 7.5 \text{ fm}, \ \tau = 5.25 \text{ fm}$$

 $u_0 = 0.55, u_2 = 0.2$

Shear viscosity *enhances* p_{T} -spectra and suppresses $v_2(p_T)$.



Comments

- Why not ε_{μ}^{i} and $\varepsilon_{\mu\nu}^{i}$?
 - The number of macroscopic equations = 14
 - No room for additional unknowns
 - Introducing more microscopic physics?
 - Model dependences lead to lack of generality e.g. transport coefficients
 - · Landau matching conditions cannot be "split."
- C-F formula: transition from macro (flow) to micro (particles)

Hydrodynamic models
(cross section >> 1)

Cooper-Frye formula is here

Cascade models
(cross section << 1)